By visualizing a parasite-killing technique of a protein found in oyster mushrooms, researchers say they may have learnt about the workings of a similar protein in humans.
The research team at Monash University in Melbourne, Australia, and at Birbeck College in the UK - publishes their findings in the journal PLOS Biology.
According to the background of the study, animals, plants, fungi and bacteria all use proteins to smash holes, or "pores," into harmful cells and kill them.
"These proteins are able to insert into the plasma membranes of target cells, creating large pores that short circuit the natural separation between the intracellular and extracellular milieu, with catastrophic results," the authors explain.
Exactly how the proteins do this, however, has been unclear. In their study, the team set out to determine the hole-punching process behind a protein called pleurotolysin, found in the edible oyster mushroom, also known as the Pleurotus ostreatus.
The oyster mushroom most commonly grows on trees and helps decompose deciduous types. It is a carnivorous mushroom; it feeds off parasites called nematodes, or roundworms.
Visualizing mushroom protein at work 'an important step forward'
Using both X-ray crystallography and cryo-electron microscopy, the researchers were able to capture the way in which pleurotolysin moves to stab its way through parasites. They found the protein repeatedly folds and unfolds to punch holes in its target and kill it.
The researchers said they never believed they would be able to see these proteins in action. It's an amazing mechanism, and also amazing that we now have the technology to see these hole-punching proteins at work.
The video below shows the pleurotolysin protein in action:
By uncovering the mechanism behind the protein's hold-punching technique, the researchers say it gives them ground to find ways to block this process or direct it to areas where it is required.
The research team says they believe a protein found in humans - called perforin - will behave the same way as pleurotolysin to kill its target cell, and if so, it could open to door to new therapies or prevention strategies for an array of diseases.
For example, they say the technique could be used to reduce immune response in individuals with autoimmune diseases or to stop malaria from infecting the liver.
In addition, the hole-punching technique could be applied to agriculture. The team says it could be used in crops and plants to help them ward off pests, which could lower the need for pesticides.
"We still have a lot of work to do before our ideas reach the clinic or industry, but seeing how the machinery works is an important step forward."
References:
1. Conformational changes during pore formation by the perforin-related protein pleurotolysin, Michelle Dunstone, Helen Saibil, et al., doi:10.1371/journal.pbio.1002049, published online 5 February 2015.
2. PLOS Biology news release, accessed 3 February 2015.
No comments:
Post a Comment